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This ar t ic le  presents  the resul ts  of an experimental  investigation of heat and mass  t ransfer  
during evaporation of water by h igh- tempera ture  gases  and shows that the mois ture-content  
distribution during the p rocess  follows a logari thmic rule, while the tempera ture  distr ibu- 
tion deviates f rom a logari thmic rule.  

Calculations for heat exchangers a re  made f rom the hea t - t rans fe r  equation Q = KFATav, in which 
the average  quantities K and AT should be used [1]: 
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Fig. 1. Experimental  column: 1) 
sprinkler;  2) sheets; 3) supporting 
framework;  4) t he rmomete r  s leeves.  
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Assuming K ~- const and Cp ~ const, we derived the well-  
known formula for the mean logari thmic tempera ture  difference 

Atav _ Atl--  Aim 

In At1 
At m 

The validity of these assumptions for heat exchangers with 
a part i t ion follows f rom the fact that the value of K is determined 
with average  p rocess  conditions, while the heat capaei tyep changes 
relat ively little. For  example, when air is cooled f rom 1000 to 
100~ its heat capacity changes f rom 0.272 to 0.244 keal /kg-deg C, 
i . e . ,  by 10%. 

The change in heat capaci ty in heat exchangers with direct  
contact between a gas and water is due both to the decrease  in gas 
tempera ture  and to the change in gas mass  result ing f rom attach- 
ment (or loss) of water vapor .  The influence of the latter factor  
depends on the mass t ransfer  ra te  and can be quite substantial.  
Thus, a i r  cooled f rom 1000 to 100~ evaporation amount-  
ing to 

Ad 103 (%1tl --CP~t2) 103 (0.272 �9 1000--0.244 �9 100) = 460 g vapor/kg air 
r 539 

and the heat capacity of the mixture increases from Ccm I = 0.272 
to Cem 2 = ep2 + 103 dcwv = 0.244 + 0.46 �9 0.48 = 0.464 kca]/~g �9 deg C. 
Hence it is clear that the assumption ep = const is inapplicable in 
this case and that use of the mean logarithmic temperature differ- 
ence leads to errors  in the calculations. 
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Fig. 2. Experimental  apparatus:  1) gas heaters;  2) air  ports;  3) 
the rmomete r  sleeves; 4) gas-sampl ing  probes; 5) vacuum pump; 
6) condensers;  7) burettes;  8) flow meters;  9) gas meters;  10) 
thermometers ;  11) gas analyzers;  12) water  meters ;  13) pyro-  
mete r .  

TABLE 1. Design Data for Apparatus and Experimental  Regimes 

rinldin , Initial difference in Column /Hea t .  Temperature Gas flow Idte, moisture 
diameter lexchange water P " g . . . . .  
and height, surface, m gas speed, : Reg I, - ~ I content, temper- 
rnm m/sec iKg/m.n I g/kg ature ~ 

 =_ OOoo 

Assuming that re la t ive ly  cold vapor attached to the gas causes additional cooling, we would expect the 
tempera ture  curve  for a gas cooled in contact with water to lie below that for heat exchange through a pa r -  
tition. There  should accordingly be a redistribution of the gas tempera ture  along the length of the  heat 
exchanger.  

In view of the difficulty of obtaining an analytic function for the t rue tempera ture  distribution along a 
heat exchanger, we made an experimental study of the tempera ture  and gas mois ture  content distributions 
under adiabatic vaporizat ions conditions. 

The experimental apparatus consisted of a column (Fig. 1) containing ver t ical  aluminum sheets 1.0 
mm thick, which formed slits 9 mm wide. Hot water  was poured over the sheets f rom above, its t empera -  
ture  being given by a wet the rmomete r .  At the upper end of the sheets was a spec i a l  sprinkler,  which en- 
sured uniform wetting of the sheets and complete coverage of their surface with a water fi lm. Hot gases  
f rom the heater  1 were admitted at the bottom of the column (Fig. 2). The gas tempera ture  was regulated 
by mixing in a tmospheric  air  through special por ts  2. In order  to monitor the water t empera ture  along the 
height of the column, there  were five the rmometer  sleeves 3 with a longitudinal slit along the upper genetrix; 
in order  to avoid overheating by the gases,  the lower portion of each sleeve was protected by a screen with 
aper tures  for water flow. In order  to determine the mois ture  content, there  were five gas probes 4, through 
whichgases  could be drawn off by vacuum pump 5 through condenser 6 for condensation of the vapor.  The 
result ing condensate ran into measur ing buret tes  7 and the purified gas was supplied to a vacuum pump 
through flow meters  8. 

In order  to obtain samples,  the aper tures  in the gas-sampl ing  probe were uniformly distributed over 
the column c ross  section, each in the center  of a slit. The experimental pumping rate was less than the 
maximum for removal  of water drops with the gas; in order  to obtain complete reliability, the probes were 
tilted toward the sampling points. The basic design data for the apparatus and the experimental  reg imes  
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Fig, 3. P r o g r e s s i v e  d i f f e r ences  in m o i s t u r e  content  a long  
height of column, a: I)Ad0=450-500; 2)100-120~g; 3) 
Reg = 3500-3700; 4) 2000-2200; 5) 1200-1300; b: l)At 0 =950- 
1000; 2) 300-330; I, I_I, III, IV) logarithmic functions. The 
other symbols are analogous to  those used in Fig. 3a. The 
figures along the abscissa represent measurement pointS. 

T A B L E  2. C o m p a r i s o n  of Ca lcu la ted  Mean Loga r i t hmic  and E x p e r -  
imen ta l  D i f f e r e n c e s  in M o i s t u r e  Content  (t) and T e m p e r a t u r e  (2) of 
H e a t - T r a n s f e r  Agen t s  dur ing  Adiaba t ic  Evapora t ion  
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45 51,5 
26,5 28,5 
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199 283 
144 190 
91 119 
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Note. I) Calculated data, ID experimental data. 
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a r e  shown in Table 1. The exper imental  resu l t s  a re  given in Fig. 3a and b. Figure 3a shows the p rog re s -  
sive heat differences in hea t - t r ans fe r -agen t  mois ture  content Ad F = d" - d F for different  measurement  
points.  The exper imental  points coincided well with a straight  line of semilogar i thmic coordinates,  sa t is -  

:fying the equation 

AdF = Ado exp (----~g) �9 

As can be seen, the initial t ~:~atl:ol:mu::rrOaSn s. section, 
since the working p rocess  began i f 

Figure 3b shows the corresponding p rogress ive  t empera tu re  d i f ferences .  As can be seen, these points 
did not form a straight  line corresponding to an  exponential function on semilogar i thmic coordinates;  the 
g rea tes t  deviation was charac te r i s t i c  of the initial stage of the p roces s .  The reduction in t empera tu re  due 
to heating of the captured vapor to the mixture  t empera tu re  had the g rea tes t  effect in this zone. 

As the gas cooled and its mass  increased,  the re la t ive  proport ion of the heat requi red  to warm the 
vapor to the mixture  t empera tu re  decreased  and the t empera tu re  curve  approximated to the logarithmic 
curve .  

Table 2 compares  the mean logarithmic and exper imental  values for  the dif ferences  in h ea t - t r an s f e r -  
agent mois ture  content and t empera tu re .  

As can be seen, the exper imental  values of Adav were  close to the mean logari thmic values, while the 
experimental  Atav were  somewhat less  than the calculated values.  
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N O T A T I O N  

a re  the heat capaci t ies  of dry gas and water  vapor, keal /kg.  ~ 
a re  the saturat ion mois ture  content at water  t empera tu re  and initial and 

cur ren t  gas mois ture  contents, g/kg; 
a re  the initial and cur ren t  difference of mois ture  contents of heat t r ans fe r  

agents, g/kg; 
is the equivalent diameter ,  n; 
is the heat and mass  t r ans fe r  surface,  m2; 
a re  the flow ra te  of dry gas and vapor,  kg/h; 
is the heat t r ans fe r  coefficient,  kca l /m 2. ~ �9 h; 
is the amount of heat t r ans fe r red ,  keal/h; 
is the mean difference of vapor par t ia l  p r e s su re s ,  atm; 
is the latent heat of condensation, kcal/kg; 
is the mean veloci ty  of mixture,  m/sec;  
a re  the initial and final gas tempera tures ;  initial, mean, large,  and 

small  t empera tu re  differences,  ~ 
is the mass  t r ans fe r  coefficient,  kg/m 2 - a t m ' h ;  
is the viscosi ty,  m2/h; 
is the Reynolds number  for  gas.  
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